

Expertise in Turbomachinery Controls

Visit our website to learn more about CCC
www.cccglobal.com

Publish Date: 11/1/2016
Author: Dan Mulholland , CCC

In this two-part article, we will investigate the
challenges of migrating legacy Safety Systems and
review effective means of repeatedly and
effectively executing compliant migrations. In Part
1 we will focus on the requirements within the
applicable standards.

WHITEPAPER

Effectively execute legacy safety
systems migration – Part 1

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 1

Introduction
In this two-part article, we will investigate the
challenges of migrating legacy Safety Systems and
review effective means of repeatedly and effectively
executing compliant migrations.

In Part 1 we will focus on the requirements within the
applicable standards.

In Part 2 we will detail the means by which effective
and compliant migrations can be carried out.

Historical Perspective
In recent years the requirements for compliance with
Functional Safety best practices has become a key pre-
requisite for the realisation of safety solutions. This
arises from the predominant causes of incidents being
systematic errors which cannot be corrected without
modification of the system i.e., repair or replacement
of hardware does not resolve the underlying problem.
A study performed by the UK Health & Safety Executive
in 2004 showed that the majority (44%) of systematic
errors were latent from the original requirements
definition with a further 15% introduced during the
engineering phase. Others will have been introduced
during maintenance and modification activities
throughout the lifecycle. It must therefore be
accepted that there is a high risk of latent systematic
errors in legacy SIS application programmes.

In some cases, programmable control and safety
systems may have been operating for many years and
the owner/operator would like to take some “Proven
in Use” credit for the application, however hardware
obsolescence demands a transfer of the application
software to a new platform. Control system
migrations have been performed many times and it is
a general misconception that safety systems can be
migrated, translated, transferred or upgraded with the
same lower degree of rigour.

Legacy SIS Platforms
Programmable Safety Instrumented Systems (SIS)
have been around since the 1980’s, however it was
soon recognised that there were issues in the integrity

of these systems which led to a number of guidelines
and standards appearing.

Safety Standards
In 2010 the 2nd edition of IEC 61508 was released and
one of the many areas addressed for improvement
was application software and the validity of legacy
programmes transferred to new platforms. This paper
describes how SIS application migration can be
performed whilst meeting the onerous requirements
of the latest edition of the IEC 61508 standard.

Issues for SIS Migration
Future Proofing
The costs of deferred production drive the
requirement for accurate interpretation of the legacy
programme such that the migration from the legacy
SIS to the new SIS is as short as possible with a high
degree of confidence that it will work consistently.

In order to minimise operational costs, plant operators
strive for standardisation to reduce costs for spares,
training and maintenance. It is desirable to be able to
replace legacy hardware with current “future proofed”
hardware and to be able to easily and quickly migrate
application programmes from the legacy SIS to the
new hardware platform. The process should also
bring the documentation of the SIS up to current
required quality and compliance standards.

Prior Use?
If the legacy SIS application programme has been
providing stable operation then the many years of
documented service could be used to build a “Prior
Use” case. If the migration process can demonstrate
complete replication of the functionality then the new
programme may be able to take some credit for the
“Prior Use” in its Validation & Verification case.
Unfortunately this is highly unlikely due to the rigorous
requirements for substantiating such a claim in
compliance with current standards. In many cases
the legacy programme does not have a lifetime of
supporting documentation and may incorporate
coding practices no longer seen as good practice.

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 2

Often the only “documentation” for the legacy system
is the system configuration database from the CPU’s
which may have been modified many times since the
original “As-Built” documentation, therefore it is
highly important to develop a clear and testable
interpretation of the legacy code functionality. The
terminology for such legacy software is SOUP
(Software Of Uncertain Pedigree) and all issues of
pedigree need to be cleared in the migrated version.

In summary, the challenges for SIS migrations are:

• Criteria For Acceptance
o Little or no reliable specification to

refer back to
• Compliance

o Legacy system not to current
standards (SOUP)

• Correctness
o Avoidance of latent Systematic errors

resident in legacy system and/or
added in migration process

o Source & Destination Systems have
different execution methodologies

o Separation of Process Application
program from system related legacy
code

• Consistency
o Should Minimise diversity of logic

typicals
o Structured approach which provides

repeatability

Migration Process Overview
Safety Requirements Specification
The key pre-requisite to any new SIS is the Safety
Requirements Specification (SRS). It is commonplace
for SIS migrations to somehow forego the SRS on the
basis that the legacy system is the basis for the
replacement system. However, the current best
practices are very clear that the avoidance of
systematic errors is dependent on a rigorous SRS.

Issues To Be Considered
The first assumption to be quashed is that the legacy
code is in line with the recommended programming

manual of the system. It is common to find “Dead
Code” in legacy systems resulting from removed safety
functions being left in the logic solver.

Some legacy logic solvers have particular nuances
such as the sequence of logic processing, which an
engineer may have exploited to achieve a particular
function more efficiently. This may not be
recognisable from the code unless detailed knowledge
of the legacy system operation is known.

Some legacy systems used application code to
implement system architecture functions, such as
redundancy and testing. Code associated with these
functions is not part of the Process Safety
Functionality and needs to be identified and removed
in the migration process.

Legacy systems may use multiple programming
formats including Function Block, Ladder Logic,
Sequence Flow Charts and/or Structured Text whereas
the target system will be predominantly Function
Block based.

Migration Methodologies
In general there are three approaches to migrating SIS
application software:-

• Manual
• Tool Assisted
• Automatic

These are described and compared in Figure – 1.

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 3

Figure 1. Migration Methodologies

MANUAL TRANSLATION
A manual translation requires human analysis of the
legacy programme and human translation to a new
programme in line with BSEN-61131-3 as applied in
the new SIS, i.e. the translation tool is the human
brain. This may be from a simple printout of the
programme from the legacy SIS. This is shown
schematically in figure 1.

Whilst this can produce very effective results, it is
prone to the vagaries of human interpretation of the
information and the particular manner in which the
human writes a programme. Should the task be given
to two or more humans then the likelihood is that no
two resulting programmes would be identical. This
interpretative issue may be acceptable, however for
safety critical applications covert or systematic errors
must be recognised, minimised, corrected and
mitigated.

Tool Assisted Translation
An assisted translation is one which relies on human
knowledge of the application but utilises tools to
clarify, standardise and simplify the translation. The
tool may provide a means to record or capture the
perceived functionality, but in a functional

environment rather than a programming environment.
This makes it easier to spot and avoid systematic
errors. This is shown schematically in figure 1.

The tool is derived from experience garnered from
multiple manual translations which have uncovered
the many challenges which have then been used to
create a “rule set”. The “rule set” allows the tool to
automatically detect predictable features in the
structure and configuration of the legacy SIS database
and either apply a known corrective mapping or
mitigation process or highlight a new anomaly to be
addressed and added to the rule set for future use. It
is therefore important that the tool and its’ rule set are
developed by competent persons with valid
experience.

The legacy SIS database is uploaded into the tool
which analyses it for known “features” and maps it
into a design and test environment. In this
environment the functionality can be emulated to
verify dynamic consistency with the legacy SIS
application. Higher test coverage can be provided in
this environment by manual testing or by the
application of automated test sequences and
programmes developed by independent persons. The
application is functionally verified before download to

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 4

the replacement system so can be performed without
interfering with production.

Once the application is functionally accepted the tool
may then use automatic export to a generic IEC 61131
compatible format or directly to the new SIS format
incorporating any special logic functions supported.
This combination of the rule set and output format are
the basis for a Library of function blocks which mean
that successive migrations become increasingly
efficient without compromising rigour.

Automatic Translation
An automatic translation is one which in theory
requires little or no human intervention. A number of
automatic conversion tools have been developed
primarily for control systems though it is generally
recognised in these cases that the 80/20 rule applies.
In other words 80% of the application is automatically
mapped but 20% has to be performed manually due to
complexity. Further the 20% manual effort requires
80% of the origin

An application programme database is uploaded from
a legacy SIS or its’ engineering station (depending on
the device), it is passed through a translation tool and
downloaded to the new SIS Engineering Facility. This
is illustrated in figure 1. The translation tool is
designed to analyse the database configuration file of
the legacy system and map it to a new database for
use in the target system by using a set of rules for
mapping. The engineering station of the Target SIS is
used for any analysis and manual
adjustment/correction (80/20 rule).

Although this makes the process less dependent on
system knowledge, the tool development requires very
detailed knowledge of both the Legacy and Target SIS.
It is extremely important that the translation tool has
the capability to detect “bad” programming practices
in order to prevent systematic error transfer and
creation as for the Tool Assisted process. However in
this case the human contribution is reduced and
maximum dependence is placed on the tool. The test
regime is based on the Target SIS engineering facility
which reduces the test coverage. Thorough testing of

the translated database means that the automatic
process incurs high manual testing overheads.

Requirements of Current Standards
In 2010 the 2nd edition of IEC 61508 was published and
included new requirements in relation to pre-existing
software elements. In the following clauses text has
been highlighted in bold where particular attention is
drawn. Part 2 of the standard includes the following
clause:

7.4.2.2 The design of the E/E/PE safety-related system (including
the overall hardware and software architecture, sensors,
actuators, programmable electronics, ASICs, embedded
software, application software, data etc.), shall meet all of the
requirements a) to e) as follows:

a) the requirements for hardware safety integrity
comprising;

– the architectural constraints on hardware
safety integrity (see 7.4.4), and
– the requirements for quantifying the effect
of random failures (see 7.4.5);

b) the special architecture requirements for ICs with
on-chip redundancy (see Annex E), where relevant,
unless justification can be given that the same level of
independence between different channels is achieved
by applying a different set of measures;
c) the requirements for systematic safety integrity
(systematic capability), which can be met by achieving
one of the following compliance routes:

– Route 1S: compliance with the
requirements for the avoidance of
systematic faults (see 7.4.6 and IEC 61508-3)
and the requirements for the control of
systematic faults (see 7.4.7 and IEC 61508-3),
or
– Route 2S: compliance with the
requirements for evidence that the
equipment is proven in use (see 7.4.10), or
 – Route 3S (pre-existing software
elements only): compliance with the
requirements of IEC 61508-3, 7.4.2.12;

NOTE The “S” subscript in the
above routes designates
systematic safety integrity to
distinguish it from Route 1H, and
Route 2H for hardware safety
integrity.

d) the requirements for system behaviour on detection
of a fault (see 7.4.8);
e) the requirements for data communication
processes (see 7.4.11).

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 5

In simplest terms, if the pre-existing code is structured
text and both the legacy and Target SIS will process
that text in the same manner then maybe a case could
be made that there is some provenance. However this
is not likely to be the case as few systems were
programmed exclusively in structured text and the
operating systems of the two SIS will likely have no
commonality anyway. This would be akin to claiming
the provenance of an engine component from a
vintage car makes it suitable for fitting to a modern car
on the grounds that is providing the same “function”.
Although software does not “wear out”, the context
and environment in which it is applied may affect its’
efficacy greatly.

It is therefore not practicable or maybe even viable to
claim “Proven-in-use” for pre-existing software
elements developed in different compliance regimes
for totally different SIS platforms.

IEC 61508-3, clause 7.2.2.2 states the following:

IEC 61508-3, clause 7.4.2.12 states the following:

What this means is that pre-existing legacy software
elements can be re-used subject to a safety case being
prepared to satisfy routes 1S, 2S or 3S and a Safety
Manual for the legacy software must be prepared.

Route 1S must demonstrate that the original software
was developed in line with the Functional Safety
process of IEC 61508 current edition. This is unlikely to

7.2.2.2 The specification of the requirements for safety-related
software shall be derived from the specified safety requirements
of the E/E/PE safety-related system (see IEC 61508- 2, 7), and any
requirements of safety planning (see Clause 6). This information
shall be made available to the software developer.

NOTE 1 This requirement does not mean that there
will be no iteration between the developer of the
E/E/PE system and the developer of the software (IEC
61508-2 and IEC 61508-3). As the safety-related
software requirements and the software architecture
become more precise, there may be an impact on the
E/E/PE system hardware architecture, and for this
reason close co-operation between the hardware and
software developer is essential. See Figure 5.
NOTE 2 Where a software design incorporates pre-
existing reusable software, that software may have
been developed without taking account of the
current system requirement specification. See
7.4.2.12 for the requirements on the pre-existing
software to satisfy the software safety
requirements specification.

7.4.2.12 Where a pre-existing software element is reused to
implement all or part of a safety function, the element shall
meet both requirements a) and b) below for systematic safety
integrity:

a) meet the requirements of one of the following
compliance routes:

– Route 1S: compliant development.
Compliance with the requirements of this
standard for the avoidance and control of
systematic faults in software;
– Route 2S: proven in use. Provide
evidence that the element is proven in
use. See 7.4.10 of IEC 61508-2;
– Route 3S: assessment of non-compliant
development. Compliance with 7.4.2.13.

NOTE 1 Route 1S, 2S and 3S are the
element compliance routes of
7.4.2.2 c) of IEC 61508-2 with
particular reference to software
elements. They are reproduced
here for convenience only, and to
minimize references back to IEC
61508-2.
NOTE 2 See 3.2.8 of IEC 61508-4.
The pre-existing software could be
a commercially available product,
or it could have been developed by
some organisation for a previous
product or system. Pre-existing
software may or may not have
been developed in accordance with
the requirements of this standard.
NOTE 3 Requirements on pre-
existing elements apply to a run-
time library or an interpreter.

b) provide a safety manual (see Annex D of IEC 61508-2
and Annex D of this standard) that gives a sufficiently
precise and complete description of the element to
make possible an assessment of the integrity of a
specific safety function that depends wholly or partly
on the pre-existing software element.

WHITEPAPER | Effectively execute legacy safety systems migration – Part 1

www.cccglobal.com 6

be the case and even it were true would have to be
supported by evidence to that effect.

3S. entails re-assessing the original application
development process in accordance with the current
edition of the standard.

IEC 61508-3, clause 6.2.3 states the following:

The key points of this clause are that the Systematic
Capability of the pre-existing software requires
management and assessment. If the migration of the
application is to involve functional modifications then
these need to be done AFTER the legacy code has been
validated.

Summary
The conclusion of this is that for Safety Related
Software it is not practicable to take credit for pre-
existing software elements developed for an operating
system different to the target system. The effort
involved in making the safety case is disproportionate
to the effort required for making a new application.
Therefore a more practical approach is to focus on the
functionality of the legacy system and model it in an
environment which allows the FSM procedures for a
new system to be applied. This ensures maximum
compliance and aids the removal of latent systematic
errors.

This steers the conclusion toward tool assisted
translation being the most applicable for compliance,
quality, efficiency and rigour.

In Part two of this article we will investigate the
challenges, procedures adopted and deliverables
generated when you adopt a ‘Tools Assisted’ approach
to Migrations.

About the Author:
Dan Mulholland is a global sales
director for Trinity Integrated
Systems Ltd. (TIS), and he has
worked through the introduction of
a new concept of physically
distributed control systems in
hazardous and harsh environments

while working with GE Intelligent Platforms and,
formerly, Measurement Technology Ltd. Mr.
Mulholland has lectured both BSc and MSc
curriculums in mechatronics at Leeds University and is
introducing lifecycle management solutions focused
on automating Phase 4 activities with TIS.

6.2.3 Software configuration management shall:

a) apply administrative and technical controls
throughout the software safety lifecycle, in order to
manage software changes and thus ensure that the
specified requirements for safety-related software
continue to be satisfied;

b) guarantee that all necessary operations have been
carried out to demonstrate that the required software
systematic capability has been achieved;

c) maintain accurately and with unique identification
all configuration items which are necessary to meet
the safety integrity requirements of the E/E/PE safety-
related system.

…..

NOTE 4 For further information on
configuration management, see IEC 61508-7

	Effectively execute legacy safety systems migration – Part 1
	Introduction
	Historical Perspective
	Legacy SIS Platforms
	Safety Standards

	Issues for SIS Migration
	Future Proofing
	Prior Use?

	Migration Process Overview
	Safety Requirements Specification
	Issues To Be Considered
	Migration Methodologies
	Figure 1. Migration Methodologies
	Manual Translation

	Tool Assisted Translation
	Automatic Translation

	Requirements of Current Standards
	Summary
	About the Author:

